Tag Archives: 拼接

全景视频技术的产品化之路

版权声明:原创作品,欢迎转载,但转载请以超链接形式注明文章来源(planckscale.info)、作者信息和本声明,否则将追究法律责任。

甚嚣尘上的VR炒作终于在今年平静了,这大概意味着VR技术开始进入技术成熟度曲线的第三个时期:行业的公众关注进入低谷,人们开始冷静客观评估技术的适用范围和潜力,并逐步发现有效的经营模式。

技术成熟度曲线

VR时代的到来是不可避免的,或者说它已经到来,只是还没有推到大众面前。另外,真正具有想象力和冲击力的新技术乃是紧随其后的AR,这一点可能并不像公众预期的那样。这个时代需要由一系列扎实漂亮的产品撑起(不是概念,不是Demo,不是DIY,是产品),我们这次来谈谈全景摄像机的产品化之路上有哪些曲折和挑战。当然,全景摄像机本身并非仅限于VR应用,我们也要包括安防应用。

安防监控领域

泛泛来说有两种全景视频实时拼接方案,即前端(机内)拼接后端(PC/手机)拼接。在安防领域也是如此。前端拼接直接由全景摄像机输出拼接完成的全景帧,具有很好的兼容性,可以直接像一台普通IPC一样接入旧有系统;而后端拼接是将全景摄像机看做独立的多路IPC,同时接入监控PC服务器,由PC完成实时拼接和监看。后端拼接的优势在于可以完成极高分辨率(目前我们的后端方案全景监控分辨率最高已经有9600万像素)的全景监控,但兼容性不好,需要将全景拼接SDK嵌入平台软件,不能做到“即插即用”。

从实现上来说,大概有如下几种:FPGA/DSP/CUDA/OpenGL/CPU. 前两种用于前端拼接,FPGA的开发和维护都有较高代价,CUDA和OpenGL方案具有最高的处理能力,CPU方案除非无法选择否则是应该排除的。在前端拼接方案里,还要考虑编码问题,全景帧动辄数千万的分辨率编码并不是一个简单问题。这里我们主要谈我们自己比较熟悉的CUDA/OpenGL方案。

安防监控领域对于全景摄像机有一些特殊需求。对于后端拼接全景,其拼接参数应当保存在设备之中,由设备传给平台软件完成实时监看的初始化流程,而平台软件上则对实时拼接的效率,全景模块与其他设备如球机的互动都有颇多要求,我们简单罗列如下。

  1. 拼接参数应该是一个很小(几k到几十k)的文件,方便写入设备及在网络上传输;
  2. 灵活的裁剪/融合算法。安防全景细分需求繁多,催生大量不同类型的设备,不同目数,不同镜头,不同摆位都会导致非常不一样的应用场景,算法需要在任何场景下都能够完美融合,不产生图像瑕疵。
  3. 全景拼接模块应当支持实时的子码流/主码流切换。平台软件实时监看几十上百路网络摄像机,区分子码流/主码流非常重要,这样在小视图模式下采用子码流,而大视图下自动切换到主码流,既保证了性能又保证了操作体验。
  4. 全景拼接模块在子码流输入下能够同时完成多达几十路的实时拼接播放。
  5. 应该有多种全景投影模式。除了常见的球面/柱面展开,碗形交互式展开在安防监控领域颇受欢迎,如图所示。各种投影模式之间应该能够实时切换。
  6. ROI局域放大。
  7. 与球机联动,全景纵览全局,球机实现局域放大。
  8. 全景像素坐标到输入图像像素坐标的正反向投影。

碗形交互式全景

解决以上需求的任务并非平凡。简单一例,子/主码流实时切换中,除非子码流与主码流具有同样的视野,否则无法在不重新初始化算法的前提下完成切换,这要求算法具备瞬间初始化完毕的性能。同样的性能要求也出现在实时全景投影模式切换中。

从一个算法到一个成熟产品的道路是长远的。行业里很多学术型团队最终败在懂算法不懂软件工程,无法将一个Demo级的算法提升成一款结构良好,功能灵活,充分解决行业内需求的算法产品,令人扼腕。

对于前端拼接来说,要支持交互式全景类型如碗形、柱面等,同样也需要将一个全景播放模块嵌入平台软件,此种情况下,上述需求中除1、2、8外都仍然需要满足。

前端拼接技术的一个需要解决的问题是,以条带展开型全景作为全景帧类型做编码传输,如何节省带宽?将一个全景球展开为一个平面图像就如同将柚子皮拍扁在桌面上,总会像全球地图那样产生一个畸变,这是无法避免的。投影类型选择不好可能会导致相当大的畸变,比如球面两极地区一个像素被拉伸成一行像素。更好的投影类型应该是立方体展开

立方体展开

这一展开方式可以将畸变控制到很小的程度,但它一定程度上损失了条带全景图那种一览无余的直观性,需要特殊的全景播放器将它重新贴图到全景球或全景展开平面上才能够还原全景。当然也有其他采用更高级的数学方案设计的展开方式,这里不再提。

全景摄像机与全景直播

这里特意避免了提“VR全景”这一概念,因为严格来说VR全景和普通的全景摄像机并非同一概念,前者要求具有视觉深度感,后者只是个普通的2D曲面,沉浸感不强。但由于普通全景摄像机技术较前者简单,所以目前市面上大都为此类产品。

我的个人观点是,目前全景摄像机难以普及的一个关键是没有标准格式。并不像传统数码相机,全景输出格式杂乱无标准,全景视频播放器无法自动化决定采用何种投影类型播放,使得全景视频成了少数geek一族的玩具。但在真正的行业标准出现之前,让自己的产品对各种不同的输出格式都做好准备不失一个办法,而且不难。

这类产品中低端以前端拼的双鱼眼为主,高端以后端拼的多目摄像机为主,但迄今几乎没有很让人满意的产品出现。

双鱼眼方案的优势在于廉价且可以极小化拼缝。在所有可能的基于拼接算法的方案里,双鱼眼的拼缝是最小的。拼缝大小取决于多个摄像机投影中心的距离,摄像机的投影中心位置大致在sensor中心向后一个焦距远的地方,通常这是个很短的距离。理论上只有各个摄像机的投影中心重合于一点才能够产生出无缝的全景图,但这种情况下相机的体积需要压缩到极限,几乎不可达到,通常只能将尺寸压缩到极小以期更好的拼缝效果。除了双鱼眼方案,它是可以真的做到投影中心重合的。

所以,对于做基于拼接算法的全景摄像机的厂商,一个忠告是,将相机尺寸做小

全景直播机似乎有很长一段时间卡在很高的软件授权费和拼接服务器价格上,但这是比较奇怪的,因为这一技术并不困难——至少在安防领域,四年前就已经有公司做到了上千万像素的全景监控。像安防领域一样,最高性能且具有很好平台兼容性的方案就是OpenGL方案,现在的显卡处理几千万像素的全景拼接融合如同砍瓜切菜,顺便搞个硬编码做推流是不难的——我们自己的技术在这方面早已验证过。

全景直播机通常并不是多个摄像机拼一块儿这么简单粗暴,它需要解决两个基本问题,一是摄像机之间的帧同步,一是摄像机之间的成像参数同步。前者保证人通过拼缝时不会出现消失又出现这种诡异效果,后者使得全景画面亮度、色彩具有一致性,不出现尖锐的过渡。

但实际上,我们并不真的需要成像参数同步。理论上,多个摄像机各自自动曝光,可以实现HDR(高动态范围)全景,因而目前在硬件上做成像参数同步只是一个过渡方案,将来为了生成HDR效果全景,这一机制是必然要废弃的。

要有更好的拼接质量,可以选择CUDA或OpenCL,它比OpenGL提供更多控制力,使得开发者可以采用更复杂的图像处理算法。我们目前就在基于CUDA尝试HDR全景算法的开发。

VR全景

VR全景是万众期待众望所归,出于不可描述之原因,这一技术被视作新时代的宅男福利。但一定要冷静!因为我们真还有很多技术问题要解决。

实现3D效果,目前主要有基于传统拼接算法拼左右眼全景图(参见我们的文章《DIY 3D全景摄像机》)和光流算法(Google Jump/Facebook Surround360等)两种。

基于拼接算法基本是没有前途的(所以我们直接做成了DIY教程-_-!)。这一方案的死结在于,3D全景中深度感最强的近景,正好是拼缝最大的,而且你不能够通过缩小设备尺寸来解决,因为它至少应该有人的瞳距(~6.2cm)那么大,否则你戴上眼镜后,会发现自己缩小了——周边的一切都大了一遭。

光流算法是目前给出效果最好的,光流刻画了两个图像的像素是如何对应的,算法利用光流来插值计算没有被相机所采集的光线之颜色,从而产生出完全无缝的全景效果。但目前效率不高,关键是光流本身的计算是相当繁重的,而且算法对于每队图像还需要计算正反向两个光流,再考虑上光流在时间轴上的一致性,带来了非常大的计算开销。

实现VR视频采集,本质上是通过有限个相机采集几个点上的物理光线,然后用这些光线来猜测、插值出其他空间位置上任意光线。这在计算机视觉领域早已研究多年(想想黑客帝国里的子弹时间镜头是怎么来的),这个方向叫做”Image-Based Rendering”.

理想自然是通过采集有限个点上的光线就能够计算出一个邻域上的光场。这一定程度上做得到,而且有很好的工作,但付诸应用仍然有距离。

所以,仅就目前的情况来说,基于光流算法来做后期,做高质量近景VR视频是没问题的,但想要直播,还得等等。

Panoramic video-related demand collection

Our panoramic technology has been successfully applied to varies products now. With the performance, equality and robustness is converging to a optimal status, we can say this without exaggeration: this is one of the top panoramic video technology in the world.
We have the highest stitch&blending performance in the world. 10s of millions of pixeles can be stitched in real-time on just one mid-range laptop computer. In the powerful driven of this stitch&blending module, we can achieve ultra high definition panoramic live on a laptop. We have implemented 40 megapixel panoramic security surveillance cameras, moreover, we support up to 30 different panoramic views which works in sub-stream mode to be stitch&blending simultaneously.Some other details include:
1. Real-time switching of sub-stream/main-stream mode.Use sub-stream in preview mode, and main-stream instead when you need to see more details. This is very suitable for the field of security monitoring.

2. Different kinds of panorama type, including but not limited to immersive sphere/semi-sphere/cylindrical,rectilinear/cylindrical/equirectangular/circular/stereographic, binocular up-down/left-right,etc.

3. Both real-time display and output panoramic image to other algorithm such as pattern recognizing is supported.

4. We can map the panoramic pixel coordinate/input pixel coordinate/the physical direction of real world to each other. With its help, we can achieve local erea zoom in or some AR effects.

We have implemented a powerful calibration algorithm, supporting the calibration of camera rigs with any number or any type of cameras, special case such as small overlapping is also supported. The stitching seam is minimized to theortical optimal, a stable result can be obtained with a fixed calibration process, with a very low rework rate.

We have independent intellectual property rights of ALL the technology mentioned above. The core technology is not dependent on any third party implementation such as PTGUI/OpenCV,etc. As a result, we are with fully control of all the details in the technology, we never stuck in a problem caused by third party code.

******************************************************************

Now it’s time to say the real purpose of this essay: we are collectting the panoramic video related demands, from all of you. We need your help.

We are planning to build a panoramic video device for industry applications. We want to know the most urgent demands and desire in your business. You can post a brief comment under this post, or email us:

planckscale1729@163.com

We look forward to your response.

演示视频之一 5路高清全景

近来发现过去发在youku上的几个demo视频误导了很多人,认为这就是我们现在的拼接技术。实际上这几个全景视频是很久前做的,跟我们目前的拼接质量和性能完全不在一个量级。但受制于手上缺乏全景设备,我们始终在demo更新上很不给力。今天我们先更新出一个,这是用一台有硬件缺陷的设备完成的,但拼接效果除掉少量瑕疵外还可以接受。

5路2048*1536半球形拼接,在12年的i5本上可以跑到100fps, 去除解码开销后cpu占用低于百分之十。实时拼接算法目前可以移植到移动平台上。

拼接效果背后是由优秀的全景相机标定算法支撑的。我们目前的量产标定算法可以在室内环境下以固定流程短时间内产生出理论最优的拼接参数,这是整个全景拼接技术的核心。

*****************************************************************

我们是一个自由团队,主要感兴趣的是计算机视觉方面新算法、技术的研发。目前全景这一块的技术已经成熟,但由于兴趣所限,我们更希望把接下来的时间用在新的挑战上,而将全景技术的产品化和推广应用托付给一个有想象力、有能力的团队,如果你/你们是这样的人,请联系我们。

QQ: 397692433

手机: 15165701250

全景摄像机量产标定算法

全景视频近期逐渐普遍化。Nokia发布了其天价的OZO全景摄像机;tencent、youku、sina这些网站也慢慢有了全景视频的身影;安防方面,巨鳄海康已经在深圳安防展展出了其研发中的全景安防摄像机,前端后端拼接全部都有,且传闻业内其他大佬也有动作。这给了我们不小的压力。

我们近来几个月闭关做全景技术的产品化,目前已经基本收官。这段时间就可以陆续看到由我们的全景算法支持的产品出现在市场上。

量产和之前作坊式的手动标定全景相机要求有着不小的差距,我们特意设计了新的标定算法来解决短时间高质量且对场地要求小的标定算法。传统的标定算法具有相当大缺陷以至于难以用到量产上,主要体现在要求使用远景,输出结果质量不稳定且难以达到理论最优结果,要求相机具有足够大的重合视野等问题,这些问题在量产标定算法中都不存在,它可以在室内场景下以固定的流程产生出理论最优的拼接效果。标定算法的量产要求应该是一些致力于全景技术团队的折戟之地,但阻碍不了我们:-P

由于精力有限,我们目前阶段只和有优秀硬件技术团队的厂商合作做全景摄像机产品。所谓优秀,是指年轻有想象力,且有让想象力落地的实力。敢而且能。当然,全景摄像机算不得新颖也算不上高门槛,在全景相机之后,我们会做一些有趣些的东西。

如果你是这样的人或团队,请联系我们。

QQ: 397692433

手机: 15165701250

高清全景视频拼接技术 简介

目前为止我们的全景技术有三种:

  1. 高质量融合全景。基于普通摄像机,用CUDA显卡进行实时拼接和高质量融合的拼接技术。基于该种技术,可以用相对较差的摄像机输出非常好的全景视频,对相机的相对摆位要求最为宽松。但这一技术对计算机性能有一定要求,需要有CUDA显卡(Nvidia近几年的显卡都支持CUDA技术)的支持。该技术详情可见《多路视频实时全景拼接算法》一文的介绍。
  2. 高效融合全景。这种技术采用了相对简单的融合算法,可以在极低的开销下产生出高分辨率全景输出,在各种硬件平台(中低端台式机、笔记本,甚至移动平台)上都能低开销流畅运行。由于融合算法简单,因此要产生高质量全景输出,全景摄像机就需要做到曝光、增益等参数的同步。
  3. 鱼眼全景。这类技术最简单,基于鱼眼镜头,将鱼眼画面矫正为更易浏览的平面展开,或投影到全景球面上做沉浸式浏览。

第一种技术之前已经有文章着重介绍,接下来我们将会发布关于后两种技术的一系列Demo视频以及性能数据。

基于高效融合技术的8路960p视频实时全景浏览

不是意外的意外,全景视频技术在最近几个月爆发式的进入公众视野。抛掉概念炒作的浮云不说,这项技术至少在安防领域将会有不小的市场。作为还算是稀有动物的全景视频核心技术提供商之一,我们不应该沉默下去了。

我们今后原则上不再销售SDK,而主要以技术合作为主。欢迎有具备硬件研发能力,对做高质量、高水准产品有兴趣的同道来电洽谈合作。

QQ: 397692433
Phone: 15165701250
Email: planckscale1729@163.com

图像拼接算法原理 2

版权声明:原创作品,欢迎转载,但转载请以超链接形式注明文章来源(planckscale.info)、作者信息和本声明,否则将追究法律责任。

2. 曲面投影

Homography_Near90Degreee

图6. 近90^{\circ}时产生越来越大的畸变

通常简单的图像拼接技术,就是如上节所示的基本原理,找出一张大概处于中间位置的图像,然后利用单应性变换把其他图像变换到该中心图像的视角下,再做一些后续的曝光补偿、图像融合等处理即可。但是这一技术有相当大的局限性,最简单的例子,不能直接用它拼出360^{\circ}的全景图。

为什么呢?让我们来考虑图6中所示情形。可见,三条光线与P^{\prime}相交的三点,原本是近乎等间距均匀分布的,而当它们映射到P平面上后,间距却产生了巨大的差异。表现在图像上,P^{\prime}上的图像变换到P上后,会产生相当大的拉伸畸变。当图中两相机的投影平面越来越趋于垂直时,这个畸变越来越大,以至于P^{\prime}上普通的一点可能会被映射到P平面的无穷远点。这时,这种简单的单应性拼接方案就彻底崩溃了。

Homography_Warp

图7. 曲面投影解决大视场角下的投影畸变问题

怎样得到更宽视场角下的拼接图?解决方法很简单。以上所出现的这种畸变源自于我们将点投影到一个平面上,设想将P掰弯,或者直接弯曲成一个圆柱面,成为图7所示的样子,那原本被投影到P平面无穷远处的点就被拉回来了。我们在圆柱面上选取一个足够均匀的坐标系,把坐标对应到像素坐标,就可以得到一个全景图了。

当然,针对不同的应用,我们还可以选取不同的投影曲面,比如选取球面用于360^{\circ} * 180^{\circ}的球面全景图,甚至也可以选择一个立方体作为投影曲面。

 

3. 后续处理

至此全景拼接的几何原理就大致说完了,虽然我们还没有给出数学表达。为了先居高临下的了解整个拼接流程,我们不妨把后续处理的梗概也在此一说。

实际应用中为了创建出完美的全景图,有很多的问题需要考虑。最典型的问题有两个,一个是如何解决不同照片中曝光不一致的问题;一个是如何在拼接缝处完美平滑的融合两张图像的问题。

第一个由曝光补偿算法来解决,大体思路是估计两张图间的曝光差异,然后进行补偿。此处不多说。

第二个问题也有众多解决方案,最为著名的大概就属Multi-Band融合算法。该算法虽然八十年代就已提出,但其效果至今仍让人赞叹。在通常图像间失配程度不大的情况下,Multi-Band可以达到肉眼几乎不可分辨的融合效果。其原理也不复杂,下面略微一提。

融合两张图像,最直接的方案是在两张图像的重合区域用一个平滑渐变的权重对二者加权叠加。该方法的效果并不理想,关键原因是我们无法兼顾拼缝附近的局域细节和大尺度上两张图片的宏观特征(如光照)。当我们希望局域细节能够完好拼接时,需要用较小的平滑渐变区;而当我们希望要宏观上平滑过渡时,又想要较大的渐变区域。这二者似乎不可调和。

但事实上并非如此。Multi-Band的成功之处就是在于它同时兼顾两种需求,当融合宏观特征时,采用一个大的平滑渐变区;融合局域细节时,则采用小的平滑渐变区。那如何才能把这两种情况分开处理呢?很简单,把图像分解为不同频带的分量之加和,图像的宏观特征在它的低频分量图里,而局域特征在高频分量图里。

所以,Multi-Band算法的过程大致就是:把图像按照频率高低展开成一个金字塔,然后高低频分量各自按照不同的方式平滑加权并叠加,最后把各频带分量重新加和,得到最终的融合结果。

该算法融合效果虽好,但对于计算量要求较大,它需要创建多座金字塔并对金字塔进行各种运算,图像像素较高时,在CPU上要达到实时基本无望。当然,GPU上情况就不一样了,我们自己就实现了实时的Multi-Band融合算法,效果很好。

 

这一系列文章主要以拼接的几何原理为主。下一节开始用数学建模前两节所述的投影模型。

(未完待续)

多路视频实时全景拼接算法

功能

本算法模块对来自多路摄像机的视频图像进行实时的无缝拼接融合,形成一路具有更宽视角的视频。特别的,可以输出360度全景视频,甚至360度*180度的球面全景。

算法分为两部分,一部分为标定过程,在进行实时拼接前,通过拍摄场景图片,计算各相机的畸变系数和相机之间的变换系数;另一部分为实时拼接过程,利用前面计算出的变换系数对来自各相机的图像进行实时去畸变、拼接,曲面投影,MultiBand融合。

根据用户需要,算法可以将全景图投影到圆柱面、球面等曲面上。

性能
模块基于CUDA实现,使用CUDA显卡完成计算,CPU开销很低。

测试环境:
GTX750Ti,I7 4790k 睿频4GHz,8G DDR3 2400MHz,Win8 64.

六路1920*1080拼接,输出6912*1024:
17fps,CPU总占用率百分之15(包含测试程序中未优化的视频解码、显示等开销)。
四路704*576拼接,输出1824*544;
80fps,CPU总占用率百分之12(包含测试程序中未优化的视频解码、显示等开销)。

适用场景与约束
首先,算法要求各相机间的相对位置、角度在实时拼接过程中保持固定,且相邻相机的视野有一定重合区域。
理论上能够变换到同一视角下进行无缝拼接的场景有两种,一种是多摄像机共中心放置,中心开花状;一种是摄像机位置任意,但场景是一个平面。当场景为远景,且场景-摄像机距离远大于摄像机之间的距离时,也可以近似看做第二种情形。上述情形之外的情况均不可拼,这是一个原则性的限制。

理论上算法对输入视频路数、输出分辨率没有限制,实际应用中这个限制来自于显卡计算能力和显存大小。
由于基于CUDA,所以算法可以扩展到多显卡并行处理(目前仍是单显卡架构),这样就可以实现大规模拼接与融合的处理。

拼接结果可参见我们的Youku主页

应用
本算法可以应用于安防监控、智能交通、卫星照片拼接、虚拟场景等领域。

优势
本模块较同类产品的突出优势是性能,由于基于CUDA显卡计算,模块具有高度的实时处理能力,能保证在简单的单显卡上实现出高分辨率多路视频拼接融合的功能,或者在多显卡计算环境下实现大规模视频/图片拼接融合的任务。
基于CUDA计算的另一个优势是,较FPGA等方案,开发周期更短,易维护且成本低廉。目前Nvidia已经推出基于Tegra的嵌入式开发组件Jetson TK1,本模块可以容易的从PC平台移植到嵌入式平台。

图像拼接算法原理 1

版权声明:原创作品,欢迎转载,但转载请以超链接形式注明文章来源(planckscale.info)、作者信息和本声明,否则将追究法律责任。
前置广告:多路视频实时全景拼接Demo可见我们的视频主页

0. 引言

76

stitch1

图1,2,3.  两张图片的拼接

图像拼接是计算机视觉中一个有趣的领域,它把来自多个不同视角相机的图像变换到同一视角下,无缝拼接成一张宽视野图像(比如360度全景图,甚至360度*180度的球面全景)。上图所示,即为两张图像的拼接,结果基本是完美的。

需要注意的是,由于相机各自的指向角度不一样,因此两图片中来自同样场景的部分并不能够通过平移图像而完全重合。比如上图中那栋带有岭南风格拱顶的房子,它的屋檐在左图中要比右图中更水平些,如果试图通过平移对齐像素来拼接两幅图,结果必然不自然(比如在屋檐处出现拐角)。两图要做到完美叠合,不是一个平移变换能做到的。当然,肯定存在这样一个变换,那它是什么呢?

事实上这里边的数学原理(射影几何)很古老,什么情况下不同位置、视角的相机可以变换到同一视角下拼接起来也是久为人知的,只不过能够利用计算机来进行大规模自动拼接,还是近些年才成熟起来的事。

那到底什么情况下图像可以拼接,如何拼接呢?不妨先摆出结论吧:在两种情况下图像可拼接,一是各相机几何中心重合;二是各相机位置任意,但场景是一个平面。一种特殊情况,场景为远景时,可以近似的等价于一个平面场景,从而也是可拼的。拼接的方法很简单,在满足上述两种情况之一时,存在一个单应性变换(Homography),能够将一个相机的图像变换到另一个相机的视角下从而可以进行拼接。

下面我们用一套直观的语言来讲解这个变换,以及更复杂些的拼接方法。

 

 1. Homography

Homography

图 4.  单应性变换

如图,计算机视觉中,我们用一个投影中心点和一张图像平面来刻画一个理想的相机。点与平面的距离为焦距,任意场景点所成像点用这样一种简单的方式来决定:将它与投影中心连线,连线与图像平面的交点即像点位置。图中给出了两个共中心的相机,它们有不同的指向(因而也有不同的图像平面PP^{\prime}),同一场景点S在两个平面上的像点由紫线与两平面的交点DD^{\prime}给出。到这里我们就直观的得到了这样一个变换:P上像点到P^{\prime}上对应像点的一个映射。这个映射可以把两张不同视角下拍摄的照片变换到同一视角下,从而能够完美拼接两张图像。这个映射正是我们要说的单应性变换。

到这里我们可以回头来解释另一个问题,为什么要求相机共中心?不妨反过来考虑,如果两相机不共中心,会出现什么样的情况?如图所示,

Homography_2

图 5.  单应性的破坏

我们让两相机的投影中心OO^{\prime}相离。这时可以看到,S_1S_2两点原本在相机O上投影到同一像点,这时在相机O^{\prime}上却投影到了不同像点。这意味着相机O^{\prime}看到了在O视角下被遮挡而看不到的内容,此时我们无法把O^{\prime}看到的图像变换到O的视角下。考虑一个极端情形可以进一步解释这个问题:如果两个相机分别拍摄同一物体的正面和背面,那它们所看到的内容无论如何也不能变换到同一视角之下,或者说,我们根本找不到这样一个新的相机,在它的视角之下可以看到OO^{\prime}二者所看到内容的总和。这就解答了我们之前的问题:非共中心放置时,各相机看到的内容太丰富以至于不能变换到同一视角下。读者可以检查,在相机共中心时,一个相机中被投影到同一像点的场景点,总会在另一相机中也被投影为同一像点。

事实上,在相机摆位任意时,我们看到的信息是如此丰富,以至于可以尝试重建出场景点的三维坐标。现代的三维重建算法可以利用不同位置、视角下拍摄的图像重建出物体的三维模型,这是后话。

当然,读者仍然可能想起,除掉共中心情形,我们还说过,相机摆位任意,但场景为一个平面时也是存在单应变换的。我们在这里不再给出这种情况的直观解释,读者可以自己思考。

 

(未完待续)